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A B S T R A C T
The inspection of power system equipment is a critical task for ensuring grid reliability and safety
which is labor-intensive, costly, and prone to human error, yet the automation process remains
challenging due to complex environmental conditions and the edge device computation burden. In
this work, we propose a real-time semantic segmentation framework designed for edge computing,
leveraging knowledge distillation from large visual foundation models to compact backbones. Our
method integrates a bounding box prompt generator with a segmentation model into a unified
architecture, significantly reducing computational complexity while maintaining high segmentation
accuracy. A two-stage distillation strategy is employed for further optimization of edge device
deployment. Extensive evaluations in the Power System dataset demonstrate that our approach
outperforms state-of-the-art methods with high efficiency (20.04 FPS on the NVIDIA Jetson Orin
NX) and competitive accuracy (19.456 IoU on power system components segmentation), offering a
practical solution for real-time equipment monitoring and inspection in power systems. The code will
be available at https://github.com/fudan-birlab/PowerSAM.

1. Introduction
The inspection of substation equipment is essential to

ensuring the reliability and safety of electrical power grids.
Traditionally, this task has been performed manually by
trained personnel, a process that is labor-intensive, costly,
and prone to human error. Additionally, manual inspections
expose workers to potential safety hazards. As such, there
is a critical need for more efficient, reliable, and automated
inspection methods. Although automation technologies have
made significant progress, they still face challenges due to
the computation burden for edge device deployment and
the variability of substation environments, which limit their
effectiveness in real-world applications.

Traditional perception methods perform well on specific
datasets but often struggle with adaptability to diverse sce-
narios. Power system perception, in particular, must address
varying environments and conditions. To improve the adapt-
ability of vision perception models, recent advancements
in visual foundation models[1, 9, 6, 14, 18] have led to a
paradigm shift in various computer vision tasks, including
object detection and image segmentation. These models,
with their extensive parameter spaces and sophisticated ar-
chitectures, are capable of capturing intricate patterns and
contextual relationships in data, which results in improved
performance across a wide range of tasks. Their ability
to generalize to diverse scenarios makes them particularly
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Figure 1: Overview of the PowerSAM Framework for Real-
Time Segment Anything in Power System Scenarios.

attractive for challenging environments, such as substation
equipment inspection. However, the deployment of such
models on edge devices for real-time, on-site inspections
remains limited. This is primarily due to the high computa-
tional demands and large model sizes, which are incompati-
ble with the resource constraints of edge computing devices.

In this work, we address edge-side power system seg-
mentation by proposing a novel method that combines the
strengths of visual foundation models with efficient design
strategies tailored for edge devices, achieving environmental
adaptability and edge-side practicability. Our approach in-
volves distilling the knowledge from a large, pre-trained vi-
sual foundation model (segmentation anything) into a more
compact, faster backbone suitable for real-time deployment
in power system equipment. We further optimize this process
by fine-tuning the mask decoder to ensure that the distilled
model retains high segmentation accuracy despite the re-
duced model size. An overview of our proposed framework
is shown in Fig.1. Our method not only preserves the gen-
eralization capabilities of large foundation models but also
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reduces the model’s footprint, making it suitable for types of
equipment with limited computational resources. Through
extensive experiments, we demonstrate that our method
maintains high segmentation accuracy while achieving real-
time performance, making it a viable solution for real-time
power system inspections.

The main contributions of this work are as follows:
• We distill knowledge from large-scale visual models

into a compact SAM model for real-time edge device
performance, ensuring accuracy for power system in-
spection.

• We design a unified architecture combining a bound-
ing box prompt generator, prompt encoder, and mask
decoder, achieving 43.16 FPS for industrial applica-
tions.

• We validate the feasibility of deploying our model
on NVIDIA Jetson Orin NX, achieving an inference
speed of 20.04 FPS, enabling efficient real-time com-
putations in power system environments.

2. Related Work
Visual Foundation Model. Visual foundation models[1, 9,
6, 14, 18] have emerged as a transformative approach in com-
puter vision, offering unparalleled generalization capabili-
ties across diverse tasks. The Segment Anything Model[6]
has been a pioneering effort, introducing a prompt-based
segmentation framework trained on a vast dataset (SA-1B)
of over 1 billion masks. SAM[6] demonstrates remarkable
zero-shot generalization to new segmentation tasks, lever-
aging its combination of a powerful image encoder[15],
flexible prompt encoder, and efficient mask decoder[4, 3].
However, the computational demands of SAM[6], with its
extensive parameter size, have limited its applicability in
real-time and resource-constrained environments. SAM2[9],
a successor to SAM[6], extends its capabilities to video
segmentation, integrating streaming memory to handle tem-
poral dimensions and refine predictions iteratively. With ad-
vancements in segmentation accuracy and efficiency, SAM2
bridges the gap between image and video segmentation,
making it suitable for dynamic environments.
Knowledge Distillation. Knowledge distillation has become
a critical method for compressing large-scale visual mod-
els to enable deployment on resource-constrained edge de-
vices. Techniques like MobileSAM[19] and TinySAM[11]
achieve significant reductions in model size by replacing
the transformer-based architecture of SAM with lightweight
alternatives[12, 16]. Despite their efficiency, these meth-
ods often compromise segmentation accuracy due to ag-
gressive model simplifications. SlimSAM[2] introduces an
alternate slimming framework and disturbed Taylor prun-
ing, enabling efficient compression with minimal data and
achieving near-original performance levels. EdgeSAM[21]
further refines this process by incorporating prompt-in-the-
loop distillation. These approaches exemplify the trade-offs

between computational efficiency and segmentation quality,
advancing the feasibility of deploying robust segmentation
models on edge devices in real-world scenarios. Together,
these efforts underscore the potential to integrate knowledge
distillation and visual foundation models for edge-efficient
applications in industrial and mobile environments.

3. Proposed Method
In this section, we introduce PowerSAM for real-time

segmentation of power systems by distilling knowledge from
the Segment Anything Model (SAM), leveraging bounding
box prompts. Our approach integrates prompt generation
and SAM into a single model, optimizing it for a smaller
backbone while retaining accuracy. This enables the model
to be deployed in real-time on edge devices like NVIDIA
Jetson NX[5], highlighting its efficiency and practicality for
on-site power system inspections. Our method pipeline is
shown in Fig.2.
3.1. Revisiting Box Prompts Based Segmentation

In our previous work[17], we harnessed the power of
both YOLOX[20] and the Segment Anything Model[6] for
the segmentation of substation equipment. By feeding im-
ages into the high-performing YOLOX object detector[20]
and SAM[6]’s image segmentor, we leveraged YOLOX[20]
to generate bounding box prompts for substation equip-
ment, which were then used as inputs for SAM[6]’s prompt
encoder. This approach allowed SAM[6] to produce high-
quality segmentation masks for substation equipment, en-
abling efficient segmentation of equipment within substation
environments.

We have further optimized our method by pruning[2]
the models to reduce the data requirements, allowing us
to train powerful substation equipment segment anything
model with a limited amount of data.
3.2. Power Systems Knowledge Distilling

Even with pruning, the depth of the SAM model remains
considerable, leading to increased latency (Table.1). In this
section, we focus on transferring the semantically rich visual
representations of the visual foundation model into a more
compact SAM model, specifically designed for real-time
inference within power system scenarios.

We initiate the knowledge distillation process by trans-
ferring the visual knowledge of the powerful SAM visual
transformer backbone[15], which is an expert in power sys-
tem visual representations, into a lighter, real-time capable
ViT backbone. This distilled model maintains the essential
characteristics of the original SAM while reducing its depth
and parameter quantity, making it suitable for deployment
on edge devices with limited computational resources. This
distillation process is shown in Fig.3(a).

Subsequently, we fine-tune the mask decoder to bridge
any minor inconsistencies between the feature spaces of the
distilled backbone and the original ViT backbone. This fine-
tuning process is shown in Fig.3(b). This adaptation ensures
that the pre-trained decoder can effectively accommodate the
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Figure 2: Overview of the real-time segment anything framework PowerSAM for power systems. The top section illustrates a
teacher-student knowledge distillation approach, where the teacher model (SAM[6]) distills visual knowledge into a smaller student
backbone. The bottom section depicts the integration of a Bounding Box Prompt Generator and a unified prompt encoder to
mask decoder architecture, enabling efficient feature utilization and high-performance perception for power system applications.
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Figure 3: The two distillation stages of the proposed framework
for power system segmentation.

subtle differences, thereby enhancing the model’s ability to
fit the nuances of power system perception scenarios.

Through this process, we have successfully developed a
real-time SAM perceiver that is efficient and highly accu-
rate in segmenting substation equipment. This distilled and
fine-tuned model compresses the knowledge from a visual
foundation model into a smaller model while maintaining the
performance necessary for practical applications in power
system monitoring and inspection.
3.3. SAM Knowledge Based Prompts Generation

As shown in Fig.4(a), we recognize that YOLOX[20], as
a standalone model for generating bounding box prompts,
still imposes a significant computational burden on edge
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Figure 4: Comparison of decoupled and integrated models for
segmentation.
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Figure 5: Illustration of the fine-tuning process for the bound-
ing box prompt generator.

devices. We detail the integration of an independent bound-
ing box prompt generator with the SAM[6] into a unified
perception model, leveraging the visual semantic knowledge
and feature representations of the visual foundation model
to its fullest performance, shown in Fig.4(b). As shown in
Fig.5, after learning the bounding box prediction by fine-
turning the bounding box prompt generator, this integration
allows the bounding box prompt generator to achieve per-
ception performance on par with a detector using a carefully
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designed backbone while avoiding the redundant time com-
plexity and spatial complexity introduced by the backbone
of a standalone bounding box prompt generator.

By consolidating these components into a single model,
we have eliminated the need for separate processes and
reduced the overall computational overhead. This stream-
lined approach enables end-to-end real-time segmentation
for power systems, ensuring that the model can efficiently
perceive and segment substation equipment with minimal
latency. The integrated model not only maintains the high
accuracy of segmentation but also optimizes the workflow
for on-site inspections and monitoring tasks in power system
environments. Through this innovation, we have realized
a powerful model for practical applications, enhancing the
efficiency and reliability of automated substation equipment
inspection.

4. Experiments
4.1. Dataset

We utilize a comprehensive dataset of substation equip-
ment that we have curated and annotated[17]. This dataset
is designed to capture the diversity and complexity of real-
world substation environments, ensuring that our model is
tested under conditions that closely mimic actual deploy-
ment scenarios. The dataset comprises a total of 7520 im-
ages, sourced from various electric power substations across
China, and includes a variety of substation equipment that
requires meticulous inspection.

Each image in the dataset has been meticulously anno-
tated using polygon masks and class labels, allowing for
precise segmentation. The inclusion of 11 different cate-
gories of substation equipment ensures that our model must
be capable of recognizing and segmenting a broad range of
equipment types. To simulate real-world inspection tasks,
the images in our dataset are captured from multiple perspec-
tives and under varying lighting conditions. This variability
is crucial for training a model that can generalize well across
different substation environments and conditions. A subset
of these images, along with their corresponding segmenta-
tion masks, is depicted in Fig.6.

For the detection and segmentation tasks, the labels
in our dataset have been preprocessed into the COCO[7]
format, which is widely adopted in the field. This involves
converting the polygon format with semantic labels into
binary masks, encoding these masks into the COCO[7] RLE
format, and calculating and saving the bounding box and
mask areas. This standardized format facilitates the training
of both the bounding box supervision and the segmentation
supervision, ensuring that our pipeline is robust and adapt-
able to industry standards.
4.2. Implementation Details
4.2.1. Distilled Segment Anything Model

For this work, our student model is the lightweight
backbone RepViT[13]. We utilize a checkpoint from the
RepViT[13] family as the pre-trained weights for our student

model, leveraging the knowledge of the visual foundation
model from the RepViT[13] architecture. The images are
resized to 1024 pixels.

For the distillation process, we set the image embedding
to 256. We also fuse features into one feature, and apply
pixel-wise feature distillation with a loss weight of 1.0. The
training is scheduled for 100 epochs with a warm-up period
of 5 epochs. The base learning rate is set to 1.0 × 10−1, and
the warm-up learning rate is 5.0 × 10−7. The learning rate
scheduler follows a cosine annealing pattern, with a decay
rate of 0.1 applied every 30 epochs. The weight decay is
configured to 0.01, and the gradient norm clipping is set
to 5.0. For the distilling process of the mask decoder, we
load the pre-trained segment anything model and continue
training for an additional 50 epochs with a reduced base
learning rate of 3.2 × 10−3. We apply a combination of
distillation losses on the mask decoder, including Binary
Cross Entropy loss with a weight of 5.0 and Dice loss with
a weight of 5.0. We allow up to 16 bounding box prompts
per image. We set the multi-mask output to 4, allowing the
model to generate multiple masks for each prompt.
4.2.2. Bounding Box Prompt Generator Fine-Tuning

We employ the YOLOX-S[20] model as our bound-
ing box prompt generator with a shared RepViT[13] back-
bone, which is also used in the Distilled SAM. The shared
RepViT[13] backbone is frozen during the bounding box
prompt generator fine-tuning process to maintain the learned
features. This setup allows the detection head to adapt to the
specific characteristics of our substation equipment dataset
while leveraging the knowledge distilled from the shared
backbone. The fine-tuning process is shown in Fig.5. The
data pre-process within the Bounding Box Prompt Generator
is configured to normalize the input images and the pad size
is set to be divisible by 32. The data augmentations employ
random scaling and affine transformations, enhancing the
model’s robustness to different image sizes and orientations.

The model’s input resolution is adjusted to 1024×1024.
The model is trained for 300 epochs. The optimizer uses
SGD with a base learning rate of 0.01, momentum of 0.9,
and weight decay of 5.0 × 10−4. The learning rate sched-
ule includes a quadratic warm-up for the first 5 epochs,
followed by a cosine annealing schedule until 15 epochs
before the end, where a constant learning rate is maintained.
During fine-tuning, we focus on optimizing the bounding
box prompt generator to generate accurate bounding box
prompts for our substation equipment instances.
4.3. Evaluation Comparisons
4.3.1. Performance of Power System Segmentation

We evaluate our proposed method against state-of-the-
art models on the Power System dataset. Our method lever-
ages the output of the YOLOX[20] Head to generate bound-
ing boxes, which serve as prompts for our SAM[6] head. We
employ mIoU (mean Intersection over Union) as the metric
for evaluating mask accuracy.

Using a two-stage distillation process, we transferred
visual knowledge from a large-scale SAM[6] model into the
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Figure 6: Some examples of segmentation results are shown with the results of SAMs in the second and third lines and our
proposed method in the fourth line. The original images are shown on the top line. Several examples show that our proposed
method can better segment the substation equipment in complex scenes.

Table 1
Comparison of mIoU (%) and FPS(N𝑓𝑟𝑎𝑚𝑒𝑠∕𝑠) on the power system semantic segmentation for different models with box and point
prompts. In this table, we present the ranking of key performance metrics: the best-performing metric is highlighted in bold, the
second-best is bold and underlined, and the third-best is italicized and underlined . PowerSAM distills the power system visual
knowledge of visual foundation model features to smaller backbones and combines the bounding box prompt generator and SAM
model into an integrated model, achieving a significant enhancement in computational efficiency while keeping the segmentation
precision.

Model Backbone
Box Prompt Point Prompt

FPS↑
Box + 1 Pt. + 2 Pt. Point + 1 Pt. + 2 Pt.

SAM-B[6] ViT-Base[15] 19.578 40.678 49.533 58.006 64.188 66.512 11.33

SAM-H[6] ViT-Huge[15] 20.520 35.983 44.020 59.668 66.249 69.059 3.79

SAM2-L[9] Hiera-Large[10] 34.341 40.870 44.431 63.696 67.605 71.031 8.87

Pruned SAM[2, 17] Pruned ViT-Base[15, 2] 19.061 40.232 47.345 57.379 64.098 66.365 13.83

EdgeSAM[21] RepViT-M1[13] 19.368 35.745 46.468 56.143 63.308 68.256 30.11

PowerSAM-B RepViT-M1[13] 18.945 41.012 50.318 57.959 64.258 67.626 41.54

PowerSAM-S RepViT-M0[13] 19.456 40.323 48.702 58.292 64.616 68.096 43.16

efficient RepViT-M0.6[13] backbone. In the first stage, we
distilled image embeddings, and in the second stage, the
backbone and prompt encoder were frozen while distilling
SAM’s lightweight mask decoder. The YOLOX[20] head
was fine-tuned using bounding box annotations from the
dataset. This approach ensured efficient knowledge trans-
fer while maintaining accuracy. As shown in Table.1, our
method achieves high computational efficiency and segmen-
tation precision, comparable to larger models like SAM with
ViT-Base[15], ViT-Huge[15], and SAM2[9] with Hiera-
Large[10] backbones and multi-scale design.

As shown in Table.1, our proposed method achieves an
optimal balance between accuracy and efficiency, making it

a robust solution for real-time segmentation in power system
environments. By distilling the capabilities of large visual
foundation models into a compact ViT[13] backbone, we
enable high-performance segmentation suitable for deploy-
ment on edge devices, addressing the practical demands of
power system inspection tasks.
4.3.2. Comparison of Decoupled and Integrated Model

To further validate the efficiency of our proposed ap-
proach, we compared the Decoupled Model and Integrated
Model configurations in terms of computational complexi-
ties, including GFLOPs and MParams, and inference speed
(ms). The Decoupled Model separates the SAM[6] and
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Table 2
Comparison of GFLOPs, MParams, and Latency (ms) between knowledge-separated Decoupled (D) Models and knowledge-shared
Integrated (I) Models with various backbones. † indicates that the Prompt Encoder and Mask Decoder are designed based on
SAM2[9] architecture and initialized with its pre-trained weights. Decoupled models use separate modules for SAM[6] and bounding
box prompt generation[20], while knowledge-shared Integrated models consolidate them into a single architecture for efficiency.

Backbone Structure GFLOPs↓ MParams↓ Latency (ms)↓

ViT-B[15] D 406.27 99.43 88.22

ViT-H[15] D 2770.90 644.58 263.39

Hiera-L †[10] D 830.36 225.84 112.61

Pruned ViT-B[2, 17] D 132.36 35.33 72.32

RepViT-M1[13] D 57.93 18.52 33.21

RepViT-M0[13] D 48.60 15.94 30.37

RepViT-M1[13] I 36.51 11.76 24.06

RepViT-M0[13] I 27.18 9.18 23.16

the Bounding Box Prompt Generator into two independent
components, while the Integrated Model combines them,
significantly reducing computational overhead without com-
promising prediction accuracy.

In the Decoupled Model, SAM uses the RepViT[13]
backbone for image embedding and mask prediction, with
YOLOX-S[20] for bounding box generation, operating at a
resolution of 640 × 480. In contrast, the Integrated Model
combines the Mask Decoder and Bounding Box Head into
a unified backbone with a higher resolution of 1024 ×
1024, eliminating redundancies and improving efficiency.
As shown in Table.2, the Integrated Model significantly
reduces computational complexity. For instance, with the
RepViT-M0[13] backbone, GFLOPs dropped from 48.60
to 27.18 and MParams from 15.94 to 9.18, while latency
improved from 30.37 ms to 23.16 ms, enabling real-time
edge device applications.

As shown in Table.2, by integrating the bounding box
generator and mask decoder, the results illustrate that our
Integrated Model is both faster and more computationally
efficient than the Decoupled Model. This efficiency makes it
ideal for real-time edge device computations in power sys-
tem scenarios, significantly reducing latency and hardware
resource requirements while maintaining robust segmenta-
tion performance.
4.3.3. Performance of Bounding Box Prompt

Generator
The performance of the Bounding Box Prompt Genera-

tor is a critical component of our method, enabling efficient
and accurate bounding box generation tailored for power
system scenarios. This module directly accepts multi-scale
image features from the ViT[15] backbone, with varying
resolutions and feature dimensions, to accommodate the
diverse sizes and shapes of substation equipment.

Our Bounding Box Prompt Generator follows the con-
figuration of the YOLOX[20] box head while integrating
PAFPN[8] for feature fusion. The PAFPN[8] processes the
multi-scale outputs of the ViT[15] backbone, enhancing
compatibility with the unique demands of power system
applications. For the RepViT-M0[13] backbone, PAFPN[8]

Table 3
Comparison of bounding box performance on the Power
System dataset between YOLOX-S[20] and our Bounding Box
Prompt Generator (BBPG).

Metric YOLOX-S[20] BBPG (Ours)

AP (Overall) ↑ 0.620 0.501

AP@0.5 ↑ 0.858 0.716

AP@0.75 ↑ 0.721 0.565

AR (Overall) ↑ 0.695 0.533

AR (Small) ↑ 0.421 0.345

AR (Medium) ↑ 0.534 0.348

AR (Large) ↑ 0.728 0.662

GFLOPs ↓ 34.28 24.20

MParams ↓ 8.94 5.12

takes in feature maps with dimensions (80, 160, 320), rep-
resenting three different resolutions. These multi-scale fea-
tures ensure the model effectively captures both large recep-
tive fields and fine-grained details in the input images, then
PAFPN[8] outputs fused features with a unified dimension of
128, which are directly fed into the multi-scale bounding box
head. This unified representation improves the generator’s
ability to detect and localize equipment of varying sizes,
from small components to large transformers.

As shown in Table.3, the evaluation on the Power
System dataset demonstrated that the generator achieves
24.20 GFLOPs and 5.12 MParams, significantly lower than
YOLOX-S[20]’s 34.28 GFLOPs and 8.94 MParams. Despite
the reduction, its AR score of 0.662 for larger objects is
competitive with YOLOX-S[20], demonstrating its ability
to balance performance and efficiency by leveraging visual
foundation model knowledge effectively.
4.4. Segmentation On Edge Computation

We transfer our consolidated model to edge devices,
which integrates bounding box prompt generation and SAM-
based semantic segmentation. We use the Jetson Orin NX[5]
16GB for its robust AI performance, which includes an
Ampere GPU, Arm Cortex-A78AE 64bit CPU, and 16 GB of
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LPDDR5 memory. This hardware provides up to 100 Sparse
INT8 TOPs and 50 Dense INT8 TOPs, making it an ideal
choice for running complex neural networks like our visual
foundation model in real-time on edge devices. And the Ten-
sorRT SDK plays a pivotal role in our deployment pipeline
by optimizing our model for the Jetson Orin NX platform.
It accelerates deep learning inference through advanced
optimizations. We utilized TensorRT’s API to integrate our
model, enabling it to run efficiently on the Jetson Orin NX’s
GPU architecture. Our model achieves 49.88 ms per frame
on Jetson Orin NX. This enables the model to monitor and
inspect power systems in real-time, significantly improving
the efficiency and safety of substation operations.

5. Conclusions
This work presents an efficient real-time segmentation

framework for power systems by distilling knowledge from
large-scale visual foundation models into a lightweight ar-
chitecture tailored for edge computation. By integrating a
bounding box prompt generator with segmentation tasks, we
achieved significant reductions in computational complexity
while maintaining competitive accuracy. Extensive experi-
ments demonstrated our method’s effectiveness, achieving
over 20.04 FPS on edge devices like NVIDIA Jetson Orin
NX[5]. This approach provides a robust and practical so-
lution for real-time monitoring and inspection in resource-
constrained environments, setting a benchmark for deploy-
ing advanced vision models in industrial applications.
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